
Abstract Infrared brightness temperatures (BTs) from the Geostationary Observing Environmental 
Satellite-16 Advanced Baseline Imager are used to examine the ability of several microphysics and 
planetary boundary layer (PBL) schemes, as well as land surface models (LSM) and surface layers, to 
simulate upper-level clouds. Six parameterization configurations were evaluated. Cloud objects are 
identified using the Method for Object-Based Diagnostic Evaluation (MODE) and analyzed using the 
object-based threat score, mean-error distance, and pixel-based metrics including the mean absolute 
error and mean bias error (MBE) for matched objects where the displacement between objects has been 
removed. Objects are identified using either a fixed BT threshold of 235 K or the 6.5th percentile of BTs 
for each model configuration. Analysis of the MODE-identified cloud objects shows that, compared to a 
configuration with the Thompson microphysics scheme, Mellor-Yamanda-Nakanishi-Niino (MYNN) PBL, 
Global Forecasting System (GFS) surface layer, and Noah LSM, the configuration employing the National 
Severe Storms Laboratory microphysics produced more cloud objects with higher BTs. Changing the PBL 
from MYNN to Shin-Hong or Eddy-Diffusivity Mass-Flux also resulted in a slightly lower accuracy, though 
these changes result in configurations which more accurately reproduced the number of observation 
cloud objects and slightly reduced the high MBE. Changing the LSM from Noah to RUC reduces forecast 
accuracy by producing too many cloud objects with too low BTs. As the forecast hour increases, this 
accuracy reduction increases at a greater rate than occurred when changing the microphysics or PBL 
scheme and is further enhanced when using the MYNN surface layer rather than the GFS.

Plain Language Summary Weather prediction models consist of many different parameters, 
which impact the resulting forecast. In this paper, we compared cloud forecasts generated using different 
model parameters to represent cloud processes, the bottom layer of the atmosphere, and the model 
surface. These model parameters are being considered for inclusion in future operational versions. It 
was found, the changes to the microphysics scheme dictating cloud processes had the largest impact on 
the accuracy of cloud forecasts, with the Thompson scheme producing more accurate clouds than the 
National Severe Storms Laboratory scheme. Cloud forecasts were more accurate when the bottom layer of 
the atmosphere was defined using the Mellor-Yamanda-Nakanishi-Niino (MYNN) scheme instead of Shin-
Hong or an Eddy-Diffusivity Mass-Flux scheme. Changing the land surface model from Noah to RUC also 
reduced cloud forecast accuracy. This reduction in accuracy increases as the forecast hour increases, at a 
greater rate than occurred when changing the microphysics scheme or the scheme defining the bottom 
layer of the atmosphere. This reduction is further enhanced when using the MYNN surface layer rather 
than the Global Forecasting System.
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1. Introduction
An accurate depiction of the spatial extent and temporal evolution of upper-tropospheric clouds is neces-
sary to produce skillful convective weather forecasts. Convective storm clouds are difficult to predict, owing 
to complex nonlinear interactions between different cloud hydrometeor species and the impact of the lo-
cal thermodynamic environment and mesoscale processes on their evolution (R. Johnson & Mapes, 2001). 
Through the inclusion of additional cloud processes and the ability to predict more than one moment of 
the particle size distribution, cloud microphysics schemes have become more realistic in recent years (e.g., 
Jones et al., 2018; Thompson et al., 2016). Improvements have also been made to other model components 
such as the planetary boundary layer (PBL) schemes (Y. Huang & Peng, 2017; Sušelj & Sood, 2010). These 
and other developments have contributed to more accurate cloud forecasts in convection-allowing models 
(CAMs) (e.g., Benjamin et al., 2016).

Despite the difficulty in predicting clouds and associated convective weather, these predictions have im-
portant socioeconomic impacts. For example, accurate cloud forecasts are important for determining when 
and where severe weather may occur (Cintineo et  al.,  2013; Mecikalski & Bedka,  2006; Purdom,  1993; 
Sieglaff et al., 2011). Thunderstorms account for most of the air traffic delays in the United States (Kaplan 
et al., 2005; Mecikalski et al., 2007; Murray, 2002), and the Federal Aviation Administration predicts that 
passenger volume on the US commercial carriers will increase almost 40% in the next 20 years (Federal Avi-
ation Administration, 2018). In addition, cloud characteristics such as cloud-top height and optical depth 
also greatly impact solar energy prediction; thus, inaccurate cloud forecasts present a challenge to solar 
power integration (Haupt et al., 2018; Lee et al., 2017). These examples demonstrate the need to continue to 
improve the accuracy of cloud forecasts in numerical weather prediction (NWP) models.

The purpose of this paper is to contribute to ongoing efforts within the modeling community to increase 
the accuracy of cloud forecasts by assessing the ability of different parameterization schemes to produce 
accurate upper-level cloud objects primarily associated with deep convection. The schemes included in 
this analysis are being considered for inclusion in future operational versions of the Finite Volume Cubed 
Sphere (Lin, 2004; Putman & Lin, 2007) limited area model (FV3-LAM). This assessment uses output from 
a suite of experimental FV3-LAM simulations run by the Center for the Analysis and Prediction of Storms 
during the 2019 Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (Clark et  al.,  2020; 
Gallo et al., 2017). The FV3-LAM simulations employed different microphysics and PBL parameterization 
schemes, as well as different land surface models (LSM) and surface layers.

One approach for assessing the accuracy of clouds in NWP models is to compare observed and simulated 
satellite infrared (IR) brightness temperatures (BTs), as IR BTs are highly sensitive to cloud-top proper-
ties and the horizontal distribution of clouds. Unlike visible imagery, IR BTs are available day and night, 
which makes them very valuable for model verification. Therefore, multiple studies have used observed 
BTs to assess the accuracy of model forecasts (e.g., Bikos et al., 2012; Cintineo et al., 2014; Feltz et al., 2009; 
Grasso & Greenwald, 2004; Grasso et al., 2008, 2014; Griffin et al., 2017a, 2017b; Jankov et al., 2011; H. Jin 
et al., 2014; Morcrette, 1991; Otkin & Greenwald, 2008; Otkin et al., 2009, 2017; Thompson et al., 2016). This 
analysis will conduct a detailed assessment of forecast accuracy using observed and simulated IR BTs from 
the Geostationary Observing Environmental Satellite (GOES)-16 Advanced Baseline Imager (ABI; Schmit 
et al., 2017) for forecasts run across the contiguous United States (CONUS).

Various techniques can be used to assess forecast accuracy, such as conventional grid point metrics, neigh-
borhood methods, and object-based verification (Gilleland et al., 2009, 2010; Jolliffe & Stephenson, 2012). 
Object-based methods present a powerful way to analyze cloud cover forecast accuracy because traditional 
metrics typically penalize CAM forecasts for displacement errors between the forecast and observed cloud 
objects. Therefore, object-based methods and IR BTs have been used to assess forecast accuracy (Griffin 
et  al.,  2017a,  2017b,  2020; Jones et  al.,  2018,  2020; Senf et  al.,  2018; Skinner et  al.,  2016,  2018). In this 
analysis, cloud objects are identified in simulated and observed satellite imagery using the Method for Ob-
ject-Based Diagnostic Evaluation (MODE; Bullock et al., 2016; Davis et al., 2006a, 2006b, 2009). MODE can 
be used to not only assess spatial displacement errors, but also to analyze other aspects of cloud objects such 
as their size. Many studies have used MODE to assess convective forecast skill, such as analyzing precipita-
tion forecasts (Bytheway & Kummerow, 2015; Cai & Dumais, 2015; Wolff et al., 2014), cloud cover (Griffin 
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et al., 2017a, 2017b, 2020; Mittermaier & Bullock, 2013), or synoptic features (Mittermaier et al., 2016). In 
addition, this analysis will use the mean-error distance (MED) (Gilleland, 2017) to summarize the amount 
of displacement between features in the observation and forecast fields, as well as other properties such the 
amount of overlap.

This paper is organized as follows. Section 2 describes the data sets and methodology, with results present-
ed in Section 3. This section includes complementary analyses that examine the forecast accuracy using 
object-based and pixel-based methods for cloud objects identified using fixed or variable BT thresholds for 
each model configuration. Finally, discussion and conclusions follow in Section 4.

2. Data
2.1. Model Configurations

This analysis uses output from a suite of six FV3-LAM configurations employing different parameterization 
schemes during the 2019 NOAA HWT Spring Forecasting Experiment. All forecasts are initialized at 00 
UTC each weekday during May 14–31, 2019 and then run for 60 h. Their long duration allows us to examine 
changes in forecast accuracy during two diurnal cycles. Forecast hours (FHs) 0–5 are not included in this 
analysis to reduce the impact of model spin-up processes on the forecast cloud field because the model 
starts from a cloud-free state.

All forecasts are run on a domain covering the CONUS at 3 km grid spacing with 64 vertical levels, includ-
ing 13 levels between 400 and 100 hPa. The model domain and a representative example of the simulated 
BTs are shown in Figure 1, with a description of each model configuration found in Table 1. The Con-
trol configuration employs the Thompson microphysics scheme with the aerosol-aware capability turned 
off (Thompson et  al.,  2004,  2008), the Mellor-Yamanda-Nakanishi-Niino (MYNN) v3.6 PBL (Nakanishi 
& Niino, 2004, 2009), the Global Forecasting System (GFS) surface layer, the Noah LSM (Mitchell, 2005; 
Niu,  2011), and the North American Model (NAM) initial and boundary conditions. This configuration 
is referred to as the Control because it is the baseline upon which the other model configurations vary. 
One configuration explores the sensitivity to the cloud microphysics scheme, the National Severe Storms 
Laboratory (Mansell et al., 2010) scheme, hereafter referred to as MP-NSSL. A second set of experiments 
replaced the PBL scheme with the Shin-Hong (Shin & Hong, 2013) or hybrid eddy-diffusivity mass-flux 
(EDMF; Han et al., 2016) schemes, hereafter referred to as PBL-SH and PBL-EDMF, respectively. A final set 
of experiments employed the RUC v3.6+ (Smirnova et al., 2016) LSM with either the GFS or MYNN surface 
layers. These model configurations are denoted as LSM-RUC_SFC-GFS and LSM-RUC_SFC-MYNN. All 
of the simulations employ the Rapid Radiative Transfer Model for General Circulation Models (Clough 
et al., 2005) radiation scheme when computing radiative fluxes at the surface and in the atmosphere, with 
in-cloud fluxes directly coupled to the cloud properties via the prognostic mixing ratios and diagnosed ef-
fective radii for each cloud species (Thompson et al., 2016).

2.2. Infrared Brightness Temperatures

The verification data set is observed BTs from the GOES-16 ABI sensor. GOES-16 is located over the equa-
tor at 74°W and has 16 bands in the visible, shortwave, and longwave IR. This analysis uses the 10.3 μm 
BTs, which have a 2-km pixel spacing at nadir. The observed BTs are calculated by remapping the observed 
radiances to the model grid using an area-weighted average of all the observed pixels overlapping a giv-
en grid box and then converting them to BTs. Simulated ABI BTs were generated using the Community 
Radiative Transfer Model (CRTM V2+) and vertical profiles of temperature, specific humidity, and cloud 
hydrometeors (Ding et al., 2011; Han et al., 2005). For cloudy grid points, a diagnosed effective radius for 
each microphysical species (cloud water, rainwater, ice, snow, and graupel) that is consistent with the as-
sumptions made by the parameterization scheme (Otkin et al., 2007) is input to the CRTM. The National 
Polar-Orbiting Operational Environmental Satellite System IR emissivity database is used to model land 
surface emissivity (Han et al., 2005).
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Figure 1. An example of simulated brightness temperatures from 20190522 at 00 UTC valid on 20190523 at 00 UTC for the six different Finite Volume 
Cubed Sphere-limited area model model configurations used in this analysis. A description of the configurations can be found in Table 1. BTs, brightness 
temperatures; EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-Yamanda-Nakanishi-Niino; 
PBL, planetary boundary layer; SH, Shin-Hong.
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3. Methodology
Cold cloud objects are identified in the observed and simulated 10.3 μm BT imagery using MODE (Davis 
et al., 2006a, 2006b, 2009). MODE uses a process called convolutional thresholding to identify objects. An 
example of identifying GOES observation objects can be seen in Figure 2. In this analysis, BTs are smoothed 
using a convolution radius of 5 grid points, which is 15 km (Figure 2b). This radius allows for the analysis of 
large and small-scale objects, as Cai and Dumais (2015) state a range of 2–8 grid points is necessary to iden-
tify convective storm objects in ∼4-km resolution radar imagery. From these smoothed BTs, objects are iden-
tified (Figure 2c) and then various object attributes, such as location and size, are computed for each object. 
Finally, the interest score is calculated, which equates the similarity of matching observation and forecast 
objects (Bullock et al., 2016; Jensen et al., 2020). The interest score is a weighted combination of the object 
pair attributes and ranges in value from 0 to 1, with 1 being a perfect match. The attributes and user-defined 
weights applied in this study (Table 2) are the same as those employed by Griffin et al. (2017a, 2017b, 2020). 
It should be noted that MODE uses a centroid distance weight that is the user-defined weight multiplied by 
the ratio of the objects' areas. Overall, this analysis prioritizes distance and size comparisons between the 
objects. More emphasis is placed on the displacement between the centroids of the objects and the ratio of 
the objects' areas because both the boundary distance and ratio of the intersection area can be artificially 
high, especially when large objects only slightly overlap each other, or a larger object fully encloses a smaller 
object.

Interest scores are also used to identify clusters of objects. Clusters are defined as one or more observation 
objects matched with one or more forecast objects (Bullock et al., 2016; Jensen et al., 2020), with a minimum 
interest score of 0.65. For example, a large forecast object can be matched with multiple smaller observation 
objects, therefore allowing these observation objects to be considered part of a matched pair. In this case, 
the attributes of the observation cluster, including its area and distance between the matched clusters, are 
used instead of the individual objects' attributes. If clusters are not used, smaller objects might not have a 
match. These objects (individually or as part of a cluster) are used to assess the model forecast accuracy 
using the methods below.

3.1. Object-Based Threat Score

The accuracy of the forecast cloud objects is assessed using the object-based threat score (OTS; A. Johnson & 
Wang, 2013). The OTS is calculated using object sizes and interest score between matching pairs of objects 
based on the equation:

 


 
   

  

P
p p p

f o
p 1f o

1OTS I a a ,
A A

 (1)

where Af and Ao represent the total spatial area of all matched and unmatched forecast and observation 
objects, respectively. P represents the number of matched forecast and observation object pairs, with Ip 
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Name Microphysics scheme Planetary boundary layer scheme Surface layer Land surface model

Control Thompson MYNN GFS Noah

MP-NSSL National Severe Storms 
Laboratory

MYNN GFS Noah

PBL-SH Thompson Shin-Hong GFS Noah

PBL-EDMF Thompson EDMF GFS Noah

LSM-RUC_SFC-GFS Thompson MYNN GFS RUC

LSM-RUC_SFC-MYNN Thompson MYNN MYNN RUC

Abbreviations: EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-Yamanda-Nakanishi-
Niino; PBL, planetary boundary layer; SH, Shin-Hong.

Table 1 
Description of Experiments Used in This Analysis
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Figure 2. Example of the convolution thresholding process to identify Geostationary Observing Environmental 
Satellite (GOES) observation objects on 20190523 at 00 UTC. (a) GOES observed brightness temperatures (BTs). (b) 
Smoothed GOES observed BTs based on a convolution radius of 5 grid points. (c) GOES observed BTs of identified 
objects from the smoothed BTs in Figure 2b.
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representing the interest score between the matched forecast and observation object/cluster pair and p
fa  and 

p
oa  representing the areas of the forecast and observation objects/clusters in the matched pair, respectively. 

Since the OTS is based on a one-to-one correspondence, objects can only be used once in the calculation 
and therefore it is possible that not all objects will be included in a matched pair. Once an object has been 
used in the OTS calculation, either as an individual object or as part of a cluster, any additional matched 
pairs that include that object are no longer used in the summation over all of the object pairs. Thus, object 
and cluster matches are sorted from the highest to the lowest interest scores to calculate the highest possible 
OTS. Interest values are used until no more matching objects or clusters remain. The OTS has a scale from 
0 to 1, with one representing a perfect forecast.

3.2. Mean-Error Distance

Another method used to quantify the distance between areas of interest in simulated and observed imagery, 
which in this analysis are MODE objects, is the MED. Unlike the centroid distance used in the MODE in-
terest score calculation, which calculates the distance between the objects’ centers of mass, MED calculates 
the shortest distance between every grid point identified as a forecast (observation) object to the closest grid 
point identified as an observation (forecast) object (Gilleland, 2017). MED from the observation object (O) 
to the forecast objects (F) is calculated using:

    
x OO

1MED F, O d x, F
N 

 (2)

where NO is the number of grid points in the observation objects and d(x, F) is the shortest distance from a 
grid point in an observation object to a forecast object. Likewise, MED from a grid point in a forecast object 
to an observation object, is calculated using:

    
x FF

1MED O, F d x, O
N 

 (3)

with NF being the number of grid points in the forecast objects and d(x, O) is the shortest distance from 
a forecast object grid point and an observation object. As a result, MED(F, O) ≠ MED(O, F). Both MED 
calculations have a perfect value of zero, which occurs when all grid points in the observation and forecast 
objects exactly overlap.

3.3. Pixel-Based Metrics

Two pixel-based metrics are used to assess the accuracy of the simulated BTs within the cold cloud objects. 
Unlike the object-based analysis described above, the mean absolute error (MAE) and mean bias error 
(MBE) will be calculated only for observation objects where all six of the model forecasts at a given time 
have a matched forecast-observation object pair. If a model configuration has a forecast object that is not 
matched to an observation object, then that forecast object is not used in the calculations. Therefore, these 
metrics are assessing the BTs within the cloud objects rather than the “goodness of the match” as is done 
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Object pair attribute User-defined weight (%) Description

centroid_dist 4 (25.0) Distance between objects' “center of mass”

boundary_dist 3 (18.75) Minimum distance between the objects

convex_hull_dist 1 (6.25) Minimum distance between the polygons surrounding the objects

angle_diff 1 (6.25) Orientation angle difference

area_ratio 4 (25.0) Ratio of the forecast and observation objects' areas (or its reciprocal, whichever yields a 
lower value)

int_area_ratio 3 (18.75) Ratio of the objects' intersection area to the lesser of the observation or forecast area 
(whichever yields a lower value)

Table 2 
User-Defined Weights and Brief Description of the Object Pair Attributes Used in This Analysis
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with the OTS and MED. The impact of spatial displacement errors between matched objects is removed 
by centering the objects using the object centroid latitude and longitude identified by MODE. An example 
of this centering can be seen in Figure 3. Since forecast and observation objects are not necessarily the 
same shape, these metrics are calculated over a box including grid points surrounding the identified cloud 
objects. The extent of this box, in each cardinal direction from the now overlapping objects' centers, is the 
largest distance that either the observation or forecast object extends from its respective center.
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Figure 3. Example of removing displacement using the center latitude and longitude of Method for Object-Based 
Diagnostic Evaluation images. (a) Two matching object that are displaced. Difference between brightness temperatures 
when the objects (b) are not and (c) are overlapped. From Griffin et al. (2020). GOES, Geostationary Observing 
Environmental Satellite.
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4. Results
4.1. Object-Based Threat Score

The OTS for cloud objects identified by MODE using a 235 K BT threshold (hereafter referred to as 235 K 
objects) is shown in Figure 4. The cloud object BT threshold of 235 K is used as it represents approximately 
the lowest 6.5% of BTs in the GOES-16 observations, which is similar to the climatological percentage of 
convective clouds (Chang & Li, 2005). Since the OTS uses the object areas, objects intersecting the edge 
of the domain are excluded from this analysis because the size of the entire object in that situation will 
be unknown. In addition, objects that are matched with an object intersecting the edge of the domain are 
excluded from this analysis. The OTS is also calculated for different sectors of the CONUS region, as seen 
in Figure 4a. An observation object is considered part of a given sector if at least 50% of the object area is 
located within that sector. Forecast objects matching observation objects in the sector are also considered 
to be in that sector. For unmatched forecast objects, the area of the object in the sector is considered in the 
OTs calculation.

Based on the sector analysis at the top of Figures 4a and 4c, all model configurations have the highest (low-
est) OTS over the central (eastern) CONUS over the full forecast period. Also, all configurations have a less 
accurate OTS compared to Control in all sectors except for MP-NSSL over western CONUS. This is inter-
esting because, unlike the Thompson scheme used in the Control, the NSSL microphysics scheme includes 
the graupel particle density and the mass and number of hail particles, and western CONUS has the lowest 
climatological probability of hail (Cintineo et al., 2012). LSM-RUC_SFC-GFS and LSM-RUC_SFC-MYNN 
have the lowest OTS compared to Control in all sectors, therefore using the RUC LSM leads to less accurate 
forecasts of cloud objects.

Over the full domain, the most accurate forecast varies based on FH. As seen in Figure 4b, between FHs 
6 and 24, PBL-SH generally has the highest OTS. Therefore, the Shin-Hong PBL scheme generates more 
accurate cloud features than the MYNN for early FHs. LSM-RUC_SFC-GFS is also more likely to have a 
higher OTS than Control for the first 24 FHs. Control tends to be much more accurate during the latter part 
of the forecast period (Figure 4d), starting around FH 34. The LSM-RUC_SFC-MYNN forecasts have the 
steepest reduction in OTS as the FH increases, followed by LSM_RUC_SFC-GFS, which indicates that the 
rapid decrease in accuracy is due to the RUC LSM. For all of the model configurations, OTS decreases with 
increasing FH due to the limited predictability of convection at longer lead times. However, there is some 
periodicity in the OTS time series, as all configurations have a distinct local maximum between FH 22 and 
FH 28, followed by a second more diffuse maximum centered on FH 48.

To further investigate the underlying behavior of the OTS, box-and-whisker plots and Taylor diagrams of 
the number and area of observed and forecast objects, respectively, are shown in Figures 5 and 6. These 
results aggregate data from all of the forecasts over the full domain and are plotted as a function of FH. Tay-
lor diagrams (Taylor, 2001) displaying the Pearson correlation coefficient along the curved y-axis, standard 
deviation along the x-axis, and root-mean-square difference (RMSD) along the dashed semi-circles are also 
shown. The RMSD is calculated using:

   


       

N 2
2

n n
n 1

1RMSD f f o o
N

 (4)

where f and o represent the number or area of the forecast and observation objects, respectively. Therefore, 
RMSD is the mean-squared error after accounting for biases (Wilks, 2011). A model configuration more 
accurately represents the observations if its location on the Taylor diagram is closer to the observation's 
location. For the Taylor diagram, the median number or area of objects from the box-and-whisker plots for 
FHs 6–60 are used for the calculations.

Based on Figure 5a, all model configurations overpredict the number of 235 K objects compared to the 
observations, with LSM-RUC_SFC-MYNN characterized by the highest number of cloud objects. This 
over-prediction in the number of cloud objects increases as the forecast progresses, with many of the con-
figurations having more cloud objects during the second day. Since all of the configurations are initialized 
with a cold start, the lack of convective coverage during the first few FHs could lead to greater potential 
instability and an increase in convective clouds in subsequent forecasts (Wong & Skamarock, 2017), with 
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Figure 4. (a) Average object-based threat score (OTS) for objects identified using a threshold of 235 K over the full forecast period for each sector of the 
Contiguous United States. A perfect OTS has a value of 1. (b) OTS over the full domain by forecast hour (FH). (c) The difference between the configuration and 
Control OTS for each sector. (d) The difference between the configuration and Control OTS over the full domain by FH. Blue (red) indicates the configuration 
OTS is higher (lower) than Control. EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-
Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, Shin-Hong.
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Figure 5. (a) Number of 235 K objects for the Geostationary Observing Environmental Satellite-16 observations and Finite Volume Cubed Sphere-limited 
area model model configurations as a function of forecast hour (FH) aggregated over all initializations. FHs 24–36 are repeated in the middle panel to facilitate 
intercomparison between the day 1 and 2 diurnal maxima. (b) Taylor diagram displays the Pearson correlation coefficient along the curved y-axis (solid lines), 
the root-mean-square difference along the dotted semi-circles in the plot, and standard deviation along the x-axis (dashed lines) for the number of 235 K objects. 
EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface models; MODE, Method for Object-Based Diagnostic Evaluation; 
MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, Shin-Hong.
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Figure 6. Same as Figure 5 but for area encompassed by 235 K objects. EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, 
land surface models; MODE, Method for Object-Based Diagnostic Evaluation; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, 
Shin-Hong.
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this overall increase in the number of objects corresponding to the decrease in the OTS (Figure 4). However, 
a local maximum in the number of objects is observed corresponding to the local maximum in OTS. Inspec-
tion of the critical success index and equitable threat scores for these times (not shown) indicates that the 
more numerous cloud objects do not increase the OTS by increasing the probability of observed and forecast 
cloud objects overlapping or the likelihood of a random forecast being accurate.

The Taylor diagram in Figure 5b shows that the spread in the median number of forecast objects is larger 
than occurred in the observations. The PBL-SH and PBL-EDMF configurations have the lowest RMSD, 
which indicates that changing the PBL scheme from the MYNN in the Control to either the Shin-Hong 
or EDMF reduces the median number of 235 K objects after accounting for the high bias in the number 
of objects (Figure 5a). The PBL-SH configuration exhibits a stronger correlation to the observations than 
the PBL-EDMF. The LSM-RUC_SFC-MYNN configuration has the largest standard deviation and RMSD 
because of the increase in the number of objects at later FHs, which is consistent with the decrease in OTS 
shown in Figure 4. Comparison of the LSM-RUC_SFC-GFS and LSM-RUC_SFC-MYNN results show that 
use of the GFS surface layer rather than the MYNN led to more accurate cloud forecasts based on the small-
er standard deviation and RMSD; however, this configuration also had a slightly lower correlation.

The overall area of the cloud objects can be seen in Figure 6a. Increases in the area encompassed by the fore-
cast and observation objects around FHs 24 and 48 correspond to the local maxima in OTS at those times 
(Figure 4), and the average size of forecast and observation objects at these times decreases (not shown). 
There is a slight increase in the area of forecast objects on the second day, however, the average area of each 
object decreases given the increase in the number of objects (Figure 5a). The Taylor Diagram (Figure 6b) 
shows that LSM-RUC_SFC-GFS has the lowest spread and RMSD overall. This indicates that the RUC LSM 
leads to smaller errors in the area encompassed by objects, once accounting for the overall bias in the area 
of objects, than occurred when using the Noah LSM. However, it should also be noted that the Control con-
figuration has the third lowest RMSD and better identifies the spread in the object area than forecasts using 
the LSM-RUC_SFC-GFS configuration.

The impact of the area encompassed by objects on the OTS can be observed by breaking the OTS into its 
three main parts as seen in Figure 7: the percent of observation objects matched (ao/Ao), the percent of 

forecast objects matched (af/Af), and the average interest score between matched objects 
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SH is overall more accurate than Control for FHs 6–24 because more of the observation area is matched to 
PBL-SH forecast objects. For LSM-RUC_SFC-GFS, more forecast object area is matched for FHs 6–24 com-
pared to Control forecast object area. The periodicity in the OTS is caused by local maxima in the average 
interest scores due to local maxima in the centroid distance and boundary layer distance attribute scores 
(not shown).

4.2. Mean-Error Distance

The MED statistics for the same objects used to calculate the OTS in Figure 4 are shown in Figure 8. Overall, 
the MED from the forecast objects to the observation objects [MED(O, F)] (Figures 8a and 8b) is larger than 
the MED from the observation objects to the forecast objects [MED(F, O)] (Figures 8c and 8d). This behav-
ior is generally a result of an increased number of grid points being identified as parts of cloud objects in 
the forecasts compared to the observations. This can especially be seen in the central and eastern CONUS, 
where there are more forecast grid points than object grid points, compared to the western CONUS, where 
the number of observation object grid points is close to the number of forecast grid points (Figure 8e) and 
the MEDs are more similar. Increasing the number of grid points could result in more overlapping grid 
points, which have an error distance of zero, if the additional object grid points increase the object's size 
enough to overcome the displacement between objects. Control has the lowest MED from the forecast to 
the observation object over the full domain and in most sectors. The MED(O, F) for MP-NSSL, PBL-SH, 
and PBL-EDMF is ∼1.5 grid points worse than the Control, which is an increase of 5%. Therefore, the PBL 
and microphysics scheme changes have only a slight impact on MED(O, F). Looking at the number of grid 
points defined as being part of cloud objects (Figure 8f), LSM-RUC_SFC-GFS has the lowest average num-
ber of forecast object grid points and the second highest MED(F, O). However, MP-NSSL has the highest 
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MED(F, O), which indicates that the presence of more forecast object grid points is not solely responsible 
for a lower MED(F, O). This is true in each of the sectors and over the full domain. LSM-RUC_SFC-MYNN 
has the highest number of forecast object grid points, and this difference is most evident in central CONUS.

The local minimum in MED(O, F) occurs at the same time as the local maximum in OTS (Figure 4). There 
is also a corresponding local maximum in the number of grid points identified as being part of cloud 
objects in both the observations and forecasts. Therefore, the decrease in MED(O, F) at these times is 
potentially caused by more forecast and observation object grid points overlapping. This behavior is espe-
cially evident for the local minimum in MED(O, F) around FH 48, where a local maximum in the percent 
of forecast object grid points overlapping with observation object grid points is seen (Figure 9). However, 
the local minimum around FH 22 does not correspond to an increase in overlapping grid points. Thus, 
the forecast objects are closer to the observation objects, however that does not necessarily result in ad-
ditional overlap.

4.3. Pixel-Based Metrics

In this section, pixel-based metrics are utilized to analyze the observed and simulated BTs associated with 
the matched object pairs. To allow for a direct comparison of forecast object BTs, unlike the analyses shown 
in Sections 4.1 and 4.2, only observation objects which have a match in all of the configurations are included 
in this analysis. This approach was chosen so that the MAE and MBE will not be skewed by additional ob-
jects produced by any model configuration; however, it does mean that some objects in the previous analysis 
will be excluded.

Time series depicting the evolution of the MAE and MBE associated with these matched object pairs are 
shown in Figure 10, with the average MAE and MBE for all forecasts shown in Table 3. On average, Control 
has the lowest MAE over the full domain (Figure 10b) and for each sector (Figure 10a), indicating that it 
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Figure 7. Breakdown of the object-based threat score for objects using a threshold of 235 K. (a) Percent of 235 K 
observation object area that is matched to a forecast object, (b) percent of 235 K forecast object area that is matched 
to an observation object, and (c) average interest score for all six Finite Volume Cubed Sphere-limited area model 
configurations by forecast hour. EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land 
surface models; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, Shin-Hong.
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has the most accurate BTs in the matched cloud objects. Similar errors occurred during the PBL-EDMF, 
PBL-SH, and LSM-RUC_SFC-GFS simulations; thus, changing the PBL scheme or the land surface model 
has minimal impact on the BTs within the cold cloud objects. The average MAE for MP-NSSL is higher than 
Control, indicating that the Thompson microphysics scheme produces more accurate BTs in the forecast 
cloud objects than the NSSL MP scheme.

Inspection of the bias time series (Figure 10d) shows that the Control configuration has a slightly positive 
MBE, indicating that the simulated BTs for matched object pairs are higher than observed. This high bias is 
the largest in the western CONUS sector (Figure 10c). The PBL-EDMF, LSM-RUC_SFC-GFS, and PBL-SH 
configurations have slightly lower MBEs than Control. Therefore, using the EDMF PBL scheme instead of 
MYNN or RUC LSM instead of Noah leads to lower BTs. For reference, the accuracy of GOES-16 10.3 μm 
BTs is 0.025 K (Wu & Schmit, 2019), so therefore these small MBEs are still significant. While the average 
biases over the full domain are also closer to zero, the BTs are still slightly less accurate compared to the 
Control based on the MAE (Figure 10a). MP-NSSL has the largest MBE, indicating that it has higher BTs 
compared to the Control configuration employing the Thompson scheme. Overall, the MBE is correlated 
(Pearson correlation coefficient of −0.57) with the difference between the size of the forecast object and 
observation object, as a greater difference resulting in a lower MBE.

Also of note from Figure 10 is the local maxima in MAE around FHs 24 and 48 that roughly corresponds 
to the local maxima in OTS at those times (Figure 4). This result is counterintuitive because these metrics 
are showing that the model configurations are both more or less accurate at the same time. However, it is 
important to reiterate that the MAE and OTS analyze different object features. The MAE compares the BTs 
between matched object pairs, whereas the OTS compares the size and location of matched object pairs in 
addition to accounting for unmatched objects. Therefore, if a matched object pair has the exact same size 
and location, but the BTs differ within them, the object pair will have the highest possible interest score of 
1 and thus the largest OTS while also having an MAE that is not the lowest possible value of 0 K. A deeper 
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Figure 8. Mean-error distance (MED) for objects identified using a threshold of 235 K by forecast hour (FH). (a) Average MED from configuration to 
observation [MED(O, F)] over the full forecast period for each sector on the contiguous United States. (b) MED(O, F) over the full domain by FH. (c) Same 
as Figure 8a but for MED from observation to configuration [MED(F, O)]. (d) Same as Figure 8b but for MED(F, O). (e) The average number of grid points 
used in the MED calculation for each model configuration for each sector over the full forecast period. (f) The average number of grid points used in the MED 
calculation for each model configuration. EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-
Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, Shin-Hong.

Figure 9. (a) Percent of grid points identified as a Method for Object-Based Diagnostic Evaluation (MODE) object 
for each configuration that overlap with a MODE observation object. (b) Percent of grid points identified as a MODE 
observation object that overlap a MODE forecast object for each model configuration. EDMF, hybrid eddy-diffusivity 
mass-flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, 
planetary boundary layer; SH, Shin-Hong.
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analysis of the object attributes (not shown) revealed that there is a local maximum in centroid distance 
interest scores at the same time as the local maximum in OTS due to smaller displacement between object 
pairs. This local maximum is not observed in the area ratio interest scores.
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Figure 10. (a) Average mean absolute error (MAE) and (c) mean bias error (MBE) for each sector of the contiguous 
United States over the full forecast period. Line plot of (b) MAE and (d) MBE for the cloud objects containing ABI 
10.3 μm brightness temperatures lower than 235 K as identified by Method for Object-Based Diagnostic Evaluation 
based on forecast hour. Objects are overlaid using the method from Figure 3. EDMF, hybrid eddy-diffusivity mass-flux; 
GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, planetary 
boundary layer; SH, Shin-Hong.
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4.4. Accounting for BT Biases in the Model Configurations

The results presented in previous sections have revealed that BT biases 
exist in the forecasts and that they differ depending on which microphys-
ics, PBL, and LSM are used. Since accounting for these biases when iden-
tifying the cloud objects could result in different performance for each 
configuration, cloud objects are also defined using a dynamic threshold 
based on the 6.5th percentile of the BT distribution for each model con-
figuration. The 6.5th percentile is chosen as this is 235 K in the observed 
BTs. This framework removes the influence of coverage biases on the er-
ror statistics and quantifies potential forecast improvements that could 
be made through a more accurate representation of the spatial extent of 
upper-level clouds. The 6.5th percentile was identified using the cumu-
lative distribution function of BTs for the observations and each model 
configuration using all forecasts starting with FH 6, as seen in Figure 11. 
Overall, all of the model configurations have BTs < 235 K at the 6.5th 
percentile (Table 4).

A comparison of the OTS for objects identified using a BT threshold equal to either 235 K or the 6.5th per-
centile for each configuration is shown in Figure 12. It is evident that differences in Figure 12a are neutral 
overall, with the average percent change from a threshold of 235 K to the 6.5th percentile being approxi-
mately zero. Control still has the highest OTS when using the 6.5th percentile of BTs to define the cloud 
objects (Figure 12b) just like when using a threshold of 235 K (Figure 12c). However, only MP-NSSL has an 
average OTS that is higher when defining objects using the 6.5th percentile of BTs instead of 235 K. MED 
for objects defined with the 6.5th percentile of BTs and 235 K has similar results to the OTS, with Control 
having the lowest MED from forecast object grid points to observations and observation object grid point to 
forecast (not shown).

For the MAE, Control again has the lowest MAE (Figure 13a) for each sector and over the full domain. 
Overall, the relative performance of each model configuration based on MAE is unchanged. For the MBE, 
one noticeable difference exists when evaluating objects defined with the 6.5th percentile or 235 K thresh-
old. While the results are still consistent with MP-NSSL having the highest MBE, model configurations now 
have a lower MBE as seen in Figure 13b. Overall, the number of pixels used when calculating the MAE and 
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Experiment MAE (K) MBE (K)

Control 17.65 0.15

MP-NSSL 19.20 1.91

PBL-SH 18.71 0.11

PBL-EDMF 18.50 −0.12

LSM-RUC_SFC-GFS 18.43 −0.13

LSM-RUC_SFC-MYNN 18.92 −1.89

Abbreviations: EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global 
Forecasting System; LSM, land surface models; MAE, mean absolute 
error; MBE, mean bias error; MYNN, Mellor-Yamanda-Nakanishi-Niino; 
PBL, planetary boundary layer; SH, Shin-Hong.

Table 3 
Average MAE and MBE for 235 K Objects With Displacement Removed

Figure 11. Cumulative distribution of 10.3 μm brightness temperatures (BTs). The 6.5th percentile is highlighted as 
it represents an observation BT of 235.0 K. EDMF, hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; 
LSM, land surface models; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, Shin-Hong.
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MBE for the 6.5th percentile of BTs is smaller than when using the 235 K 
threshold, and the objects now encompass more of the analysis box. 
Therefore, higher BTs surrounding the objects were potentially respon-
sible for the higher MBEs when using an object BT threshold of 235 K.

5. Discussion and Conclusions
In this study, object-based verification is used to assess the accuracy of 
clouds predicted in the upper troposphere in FV3-LAM simulations per-
formed during the 2019 HWT Spring Forecasting Experiment. This as-
sessment was accomplished by comparing MODE-identified objects in 
observed and simulated GOES-16 ABI 10.3  μm BTs. Six model config-
urations employing different LSM and microphysics, PBL, and surface 
layer schemes, were evaluated. The forecast accuracy was assessed using 
the (a) OTS that quantifies the similarity of matched cloud objects using 
MODE interest scores and the ratio of their areas to the total area of all 
matched and unmatched objects, (b) MED, which calculates the distance 
between every grid point in a forecast cloud object to the closest observa-

tion object grid point, and vice versa, and (c) pixel-based metrics such as the MAE and MBE which assess 
the BTs of the matched object pairs. The MAE and MBE are only calculated for observation objects with 
a matching object in all six of the corresponding model forecasts and uses the BTs from grid points in the 
object and surrounding area after spatial displacement between the objects is removed. Therefore, these 
methods assess how well the objects' shape and size match, the displacement between objects, and how well 
the simulated BTs from matched forecast objects and the surrounding area compare to the observed BTs.

Based on the OTS and MAE, over the full forecast period the configuration with the Thompson aero-
sol-aware microphysics scheme, the MYNN PBL, the GFS surface layer, the Noah LSM, and the NAM initial 
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Configuration 6.5th BT threshold (K)

Control 231.0

MP-NSSL 232.3

PBL-SH 230.9

PBL-EDMF 230.9

LSM-RUC_SFC-GFS 231.1

LSM-RUC_SFC-MYNN 229.7

Note. The 6.5th percentile represents 235.0 K in the observations.
Abbreviations: BT, brightness temperature; EDMF, hybrid eddy-
diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface 
models; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, planetary 
boundary layer; SH, Shin-Hong.

Table 4 
The 6.5th Percentile of Simulated BTs for Each Model Configuration

Figure 12. (a) Difference in object-based threat score when defining cloud objects using the 6.5th percentile of 
brightness temperature distribution (b) and with a fixed threshold of 235 K (c). EDMF, hybrid eddy-diffusivity mass-
flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-Yamanda-Nakanishi-Niino; PBL, 
planetary boundary layer; SH, Shin-Hong.
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and boundary conditions was the most accurate model configuration. This result is true no matter whether 
the cloud objects are defined using a BT threshold of 235 K or the 6.5th percentile of the BT distribution 
for the observations and each configuration. Changing the microphysics scheme from Thompson to NSSL 
resulted in less accurate cloud objects due to an increase in the median number and area covered by cloud 
objects, which results in a lower percent of forecast cloud area being matched and a lower OTS. These re-
sults are consistent with Arbizu-Barrena et al. (2015) who found that NSSL produced a higher frequency 
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Figure 13. Same as Figure 10 but for objects defined using the 6.5th percentile of brightness temperatures. EDMF, 
hybrid eddy-diffusivity mass-flux; GFS, Global Forecasting System; LSM, land surface models; MYNN, Mellor-
Yamanda-Nakanishi-Niino; PBL, planetary boundary layer; SH, Shin-Hong.
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bias than the Thompson scheme when comparing cloud cover to ceilometer data. Interestingly, for matched 
object pairs over the full CONUS domain, MP-NSSL had a higher MBE in the BTs than occurred when using 
the Thompson MP scheme. Therefore, it appears that the inclusion of graupel particle density and the mass 
and number of hail particles in the NSSL microphysics scheme (which are not in the Thompson scheme) 
acts to increase the BTs. Since changes in cloud ice have the largest impact on simulated IR BTs (Grasso & 
Greenwald, 2004), it is possible the NSSL MP scheme has less cloud ice than the Thompson due to the hail 
category. In addition, forecast objects in matched object pairs when using the MP-NSSL scheme are gener-
ally smaller than objects from the Thompson MP scheme. These smaller objects could be due to less cloud 
water, as Cohen and McCaul (2006) indicated cloud water is collected by graupel and higher cloud water 
resulted in larger anvils. Fewer large-scale clouds could result in more convective activity, as noted by Tost 
et al. (2007). However, future work is needed to confirm if using the NSSL MP scheme results in a smaller 
amount of cloud ice or cloud water than the Thompson MP scheme.

Changing the PBL scheme from the MYNN to the Shin-Hong or EDMF schemes slightly reduces the overall 
forecast accuracy based on the lower OTS and higher MAE over the full forecast length. However, it is im-
portant to note that using the Shin-Hong PBL scheme results in a higher OTS for FHs 6–24 than the MYNN 
PBL scheme because its objects match more of the observation object during these FHs. One reason for the 
lower OTS is lower average interest scores, partly due to lower average area ratio interest scores from slightly 
larger objects. This increase in object area also increases the MED, though this increase compared to using 
the MYNN PBL scheme is only ∼1 grid point. These larger objects also result in BTs that are lower for the 
object and surrounding area for both thresholds used to define the cloud objects, and therefore the BTs 
are less accurate. The higher MAE for the Shin-Hong PBL scheme compared to MYNN is consistent with 
the findings in Cintineo et al. (2014) that the Thompson MP scheme with Yonsei University PBL scheme, 
which the Shin-Hong is based on (M. Huang et al., 2019), had a slightly higher MAE than the Thompson 
MP scheme with the MYNN PBL. It is difficult to say why one PBL scheme is more accurate than another 
in this analysis. Shin and Dudhia (2016) found that vertical velocities for an EDMF PBL better represented 
a reference data set than the MYNN PBL, which could be why PBL-EDMF has a lower median number of 
objects when using a BT threshold of 235 K and better represents the number of observation objects. How-
ever, the EDMF PBL overestimates the area covered by objects compared to the MYNN PBL. This could be 
due to a higher entrainment ratio in the MYNN PBL scheme compared to the EDMF (Shin & Dudhia, 2016), 
as higher entrainment is found to reduce clouds (Lamraoui et al., 2019).

For the configurations using different LSMs and surface layers, the impact of the different surface features 
becomes more pronounced with increasing FH. One potential reason for this is the RUC LSM was found 
to have a higher surface air temperature than the Noah LSM (J. Jin et al., 2010) which could lead to more 
development of upper-level clouds. LSMs impact the surface air temperature through changes in the par-
titioning of net surface radiation into sensible and latent heat fluxes (Friedl, 2002). Over the full forecast 
time period, both LSM-RUC_SFC-GFS and LSM-RUC_SFC-MYNN have lower MBE and higher MAE than 
the Noah LSM and GFS surface layer, regardless of whether a threshold of 235 K or one based on the 6.5th 
percentile of the BT distribution is used to identify the cloud objects. They also have a slightly lower OTS 
due to a smaller percentage of forecast and observation area matched and lower average interest scores, and 
have a slightly higher MED(O, F). Changing the surface layer from GFS to MYNN further leads to lower BTs 
and increases the number of objects more rapidly as the forecast progresses.

As this study focuses solely at the 10.3 μm BTs, future work includes extending this analysis to other GOES-
16 ABI bands. For example, the 6.2 and 6.9 μm bands are sensitive to water vapor at different levels of the 
troposphere and can be used to examine other atmospheric features such as jet streams and troughs. Other 
work will analyze radar data in conjunction with satellite-based object verification to gain a deeper under-
standing of the forecast accuracy.

Data Availability Statement
Data used in this analysis can be found in MINDS@UW (Multidisciplinary Institutional Network for Data 
and Scholarship) at https://doi.org/10.21231/6S0Z-ZT47.
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